Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Pediatr Pulmonol ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353361

RESUMO

BACKGROUND: While the widespread initiation of elexacaftor/tezacaftor/ivacaftor (ETI) has led to dramatic clinical improvements among persons with cystic fibrosis (pwCF), little is known about how ETI affects the respiratory mucosal inflammatory and physiochemical environment, or how these changes relate to lung function. METHODS: We performed a prospective, longitudinal study of adults with CF and chronic rhinosinusitis (CF-CRS) followed at our CF center (n = 18). Endoscopic upper respiratory tract (paranasal sinus) aspirates from multiple visit dates, both pre- and post-ETI initiation, were collected and tested for cytokines, metals, pH, and lactate levels. Generalized estimating equations were used to identify relationships between ETI and upper respiratory tract (URT) biomarker levels, and between URT biomarkers and lung function or clinical sinus parameters. RESULTS: ETI was associated with decreased upper respiratory mucosal cytokines B-cell activating factor (BAFF), IL-12p40, IL-32, IL-8, IL-22 and soluble tumor necrosis factor-1 (sTNFR1), and an increase in a proliferation-inducing ligand (APRIL) and IL-19. ETI was also associated with decreased URT levels of copper, manganese, and zinc. In turn, lower URT levels of BAFF, IL-8, lactate, and potassium were each associated with ~1.5% to 4.3% improved forced expiratory volume in 1 s (FEV1 ), while higher levels of IFNγ, iron, and selenium were associated with ~2% to 10% higher FEV1 . CONCLUSIONS: Our observations suggest a dampening of inflammatory signals and restriction in microbial nutrients in the upper respiratory tract with ETI. These findings improve our understanding of how ETI impacts the mucosal environment in the respiratory tract, and may give insight into the improved infectious and inflammatory status and the resulting clinical improvements seen in pwCF.

2.
PLoS Pathog ; 20(2): e1011840, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315735

RESUMO

Human metapneumovirus (HMPV) is an important cause of acute lower respiratory infection in children and adults worldwide. There are four genetic subgroups of HMPV and both neutralizing antibodies and T cells contribute to protection. However, little is known about mechanisms of pathogenesis and most published work is based on a few extensively passaged, laboratory-adapted strains of HMPV. In this study, we isolated and characterized a panel of low passage HMPV clinical isolates representing all four genetic subgroups. The clinical isolates exhibited lower levels of in vitro replication compared to a lab-adapted strain. We compared disease phenotypes using a well-established mouse model. Several virulent isolates caused severe weight loss, lung pathology, airway dysfunction, and fatal disease in mice, which was confirmed in three inbred mouse strains. Disease severity did not correlate with lung viral titer, as virulent strains exhibited restricted replication in the lower airway. Virulent HMPV isolates were associated with markedly increased proinflammatory cytokine production and neutrophil influx; however, depletion of neutrophils or genetic ablation of inflammasome components did not reverse disease. Virulent clinical isolates induced markedly increased type I and type III interferon (IFN) secretion in vitro and in vivo. STAT1/2-deficient mice lacking both type I and type III IFN signaling showed reduced disease severity and increased lung viral replication. Inhibition of type I IFN signaling using a blocking antibody or genetic ablation of the type I IFN receptor reduced pathology with minimal effect on viral replication. Conversely, blockade of type III IFN signaling with a neutralizing antibody or genetic ablation of the IFN-lambda receptor had no effect on pathogenesis but restored viral replication. Collectively, these results demonstrate distinct roles for type I and type III IFN in HMPV pathogenesis and immunity.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Animais , Camundongos , Humanos , Interferon lambda , Pulmão , Infecções Respiratórias/patologia , Interferons
3.
Physiol Rep ; 12(1): e15902, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163670

RESUMO

Although zinc deficiency (secondary to malnutrition) has long been considered an important contributor to morbidity and mortality of infectious disease (e.g. diarrhea disorders), epidemiologic data (including randomized controlled trials with supplemental zinc) for such a role in lower respiratory tract infection are somewhat ambiguous. In the current study, we provide the first preclinical evidence demonstrating that although diet-induced acute zinc deficiency (Zn-D: ~50% decrease) did not worsen infection induced by either influenza A (H1N1) or methicillin-resistant staph aureus (MRSA), Zn-D mice were sensitive to the injurious effects of superinfection of H1N1 with MRSA. Although the mechanism underlying the sensitivity of ZnD mice to combined H1N1/MRSA infection is unclear, it was noteworthy that this combination exacerbated lung injury as shown by lung epithelial injury markers (increased BAL protein) and decreased genes related to epithelial integrity in Zn-D mice (surfactant protein C and secretoglobins family 1A member 1). As bacterial pneumonia accounts for 25%-50% of morbidity and mortality from influenza A infection, zinc deficiency may be an important pathology component of respiratory tract infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Desnutrição , Staphylococcus aureus Resistente à Meticilina , Pneumonia Bacteriana , Animais , Camundongos , Pneumonia Bacteriana/complicações , Staphylococcus aureus , Zinco
4.
Am J Pathol ; 194(3): 384-401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159723

RESUMO

Respiratory tract virus infections cause millions of hospitalizations worldwide each year. Severe infections lead to lung damage that coincides with persistent inflammation and a lengthy repair period. Vaccination and antiviral therapy help to mitigate severe infections before or during the acute stage of disease, but there are currently limited specific treatment options available to individuals experiencing the long-term sequelae of respiratory viral infection. Herein, C57BL/6 mice were infected with influenza A/PR/8/34 as a model for severe viral lung infection and allowed to recover for 21 days. Mice were treated with rapamycin, a well-characterized mammalian target of rapamycin complex 1 (mTORC1) inhibitor, on days 12 to 20 after infection, a time period after viral clearance. Persistent inflammation following severe influenza infection in mice was primarily driven by macrophages and T cells. Uniform manifold approximation and projection analysis of flow cytometry data revealed that lung macrophages had high activation of mTORC1, an energy-sensing kinase involved in inflammatory immune cell effector functions. Rapamycin treatment reduced lung inflammation and the frequency of exudate macrophages, T cells, and B cells in the lung, while not impacting epithelial progenitor cells or adaptive immune memory. These data highlight mTORC1's role in sustaining persistent inflammation following clearance of a viral respiratory pathogen and suggest a possible intervention for post-viral chronic lung inflammation.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia , Camundongos , Animais , Humanos , Infecções por Orthomyxoviridae/complicações , Camundongos Endogâmicos C57BL , Pulmão , Macrófagos , Inflamação/complicações , Sirolimo/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Serina-Treonina Quinases TOR , Mamíferos
5.
J Infect Dis ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665976

RESUMO

Cell-based quadrivalent inactivated influenza vaccine has been shown to have higher vaccine effectiveness than traditional egg-based quadrivalent inactivated influenza vaccine. This is observed despite similar levels of serum hemagglutinin antibodies induced by each vaccine. Here, we examine peripheral immune activation following egg-based or cell-based influenza vaccination in a clinical trial in children. Peripheral blood mononuclear cells were isolated and RNA sequenced from 81 study participants (41 Fluzone, egg-based and 40 Flucelvax, cell based) pre- and 7 days post- vaccination. Seroconversion was assessed by hemagglutinin inhibition assay. Differential gene expression was determined and pathway analysis was conducted. Cell-based influenza vaccine induced greater interferon stimulated and innate immune gene activation compared with egg-based influenza vaccine. Participants who seroconverted had increased interferon signaling activation versus those who did not seroconvert. These data suggest that cell-based influenza vaccine stimulates immune activation differently from egg-based influenza vaccine, shedding light on reported differences in vaccine effectiveness.

6.
mBio ; 14(4): e0285022, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37278532

RESUMO

Interferon (IFN) represents a well-known component of antiviral immunity that has been studied extensively for its mechanisms of action and therapeutic potential when antiviral treatment options are limited. Specifically in the respiratory tract, IFNs are induced directly on viral recognition to limit the spread and transmission of the virus. Recent focus has been on the IFNλ family, which has become an exciting focus in recent years for its potent antiviral and anti-inflammatory activities against viruses infecting barrier sites, including the respiratory tract. However, insights into the interplay between IFNλs and other pulmonary infections are more limited and suggest a more complex role, potentially detrimental, than what was seen during viral infections. Here, we review the role of IFNλs in pulmonary infections, including viral, bacterial, fungal, and multi-pathogen super-infections, and how this may impact future work in the field.


Assuntos
Interferons , Pneumonia , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico
7.
J Pediatric Infect Dis Soc ; 12(6): 342-352, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37232430

RESUMO

BACKGROUND: Few studies have focused on the immune response to more recent influenza vaccine formulations such as cell-cultured inactivated influenza vaccine (ccIIV4) or live-attenuated influenza vaccine (LAIV4) in older children and young adults, or differences in immunoglobulin response using newer antibody landscape technology. METHODS: Participants ages 4-21 were randomized to receive ccIIV4 (n = 112) or LAIV4 (n = 118). A novel high-throughput multiplex influenza antibody detection assay was used to provide detailed IgG, IgA, and IgM antibody isotypes, along with hemagglutination inhibition levels (HAI), measured pre- and 28 days post-vaccination. RESULTS: The HAI and immunoglobulin isotype response to ccIIV4 was greater than LAIV4, with significant increases in IgG but not IgA or IgM. The youngest participants had the highest LAIV4 response. Prior LAIV4 vaccination was associated with a higher response to current season ccIIV4. Cross-reactive A/Delaware/55/2019(H1N1)pdm09 antibodies were present pre-vaccination and increased in response to ccIIV4, but not LAIV4. Immunoglobulin assays strongly correlated with and confirmed the findings of HAI titers to measure immune response. CONCLUSIONS: Age and prior season vaccination may play a role in the immune response in children and young adults to ccIIV4 and LAIV4. While immunoglobulin isotypes provide high-level antigen-specific information, HAI titers alone can provide a meaningful representation of day 28 post-vaccination response. CLINICAL TRIALS NO: NCT03982069.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adulto Jovem , Humanos , Criança , Influenza Humana/prevenção & controle , Influenza Humana/tratamento farmacológico , Anticorpos Antivirais , Vacinas Atenuadas , Vacinas de Produtos Inativados , Testes de Inibição da Hemaglutinação , Imunoglobulina G
8.
Sci Adv ; 9(20): eadf9016, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37205761

RESUMO

Cytokine storm describes a life-threatening, systemic inflammatory syndrome characterized by elevated levels of proinflammatory cytokines and immune cell hyperactivation associated with multi-organ dysfunction. Matrix-bound nanovesicles (MBV) are a subclass of extracellular vesicle shown to down-regulate proinflammatory immune responses. The objective of this study was to assess the efficacy of MBV in mediating influenza-induced acute respiratory distress syndrome and cytokine storm in a murine model. Intravenous administration of MBV decreased influenza-mediated total lung inflammatory cell density, proinflammatory macrophage frequencies, and proinflammatory cytokines at 7 and 21 days following viral inoculation. MBV decreased long-lasting alveolitis and the proportion of lung undergoing inflammatory tissue repair at day 21. MBV increased the proportion of activated anti-viral CD4+ and CD8+ T cells at day 7 and memory-like CD62L+ CD44+, CD4+, and CD8+ T cells at day 21. These results show immunomodulatory properties of MBV that may benefit the treatment of viral-mediated pulmonary inflammation with applicability to other viral diseases such as SARS-CoV-2.


Assuntos
COVID-19 , Influenza Humana , Camundongos , Animais , Humanos , Influenza Humana/tratamento farmacológico , SARS-CoV-2 , Síndrome da Liberação de Citocina , Linfócitos T CD8-Positivos , Inflamação/tratamento farmacológico , Citocinas , Imunidade
9.
Open Forum Infect Dis ; 10(3): ofad095, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949873

RESUMO

Background: The ongoing circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a diagnostic challenge because symptoms of coronavirus disease 2019 (COVID-19) are difficult to distinguish from other respiratory diseases. Our goal was to use statistical analyses and machine learning to identify biomarkers that distinguish patients with COVID-19 from patients with influenza. Methods: Cytokine levels were analyzed in plasma and serum samples from patients with influenza and COVID-19, which were collected as part of the Centers for Disease Control and Prevention's Hospitalized Adult Influenza Vaccine Effectiveness Network (inpatient network) and the US Flu Vaccine Effectiveness (outpatient network). Results: We determined that interleukin (IL)-10 family cytokines are significantly different between COVID-19 and influenza patients. The results suggest that the IL-10 family cytokines are a potential diagnostic biomarker to distinguish COVID-19 and influenza infection, especially for inpatients. We also demonstrate that cytokine combinations, consisting of up to 3 cytokines, can distinguish SARS-CoV-2 and influenza infection with high accuracy in both inpatient (area under the receiver operating characteristics curve [AUC] = 0.84) and outpatient (AUC = 0.81) groups, revealing another potential screening tool for SARS-CoV-2 infection. Conclusions: This study not only reveals prospective screening tools for COVID-19 infections that are independent of polymerase chain reaction testing or clinical condition, but it also emphasizes potential pathways involved in disease pathogenesis that act as potential targets for future mechanistic studies.

10.
Nat Immunol ; 24(5): 841-854, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928412

RESUMO

Regulatory T (Treg) cells are an immunosuppressive population that are required to maintain peripheral tolerance and prevent tissue damage from immunopathology, via anti-inflammatory cytokines, inhibitor receptors and metabolic disruption. Here we show that Treg cells acquire an effector-like state, yet remain stable and functional, when exposed to interferon gamma (IFNγ) during infection with lymphocytic choriomeningitis and influenza A virus. Treg cell-restricted deletion of the IFNγ receptor (encoded by Ifngr1), but not the interleukin 12 (IL12) receptor (encoded by Il12rb2), prevented TH1-like polarization (decreased expression of T-bet, CXC motif chemokine receptor 3 and IFNγ) and promoted TH2-like polarization (increased expression of GATA-3, CCR4 and IL4). TH1-like Treg cells limited CD8+ T cell effector function, proliferation and memory formation during acute and chronic infection. These findings provide fundamental insights into how Treg cells sense inflammatory cues from the environment (such as IFNγ) during viral infection to provide guidance to the effector immune response. This regulatory circuit prevents prolonged immunoinflammatory responses and shapes the quality and quantity of the memory T cell response.


Assuntos
Interferon gama , Linfócitos T Reguladores , Interferon gama/metabolismo , Citocinas/metabolismo , Linfócitos T CD8-Positivos , Antivirais/metabolismo , Células Th1
11.
Vaccine ; 41(3): 862-869, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36543682

RESUMO

BACKGROUND: Immune responses to influenza vaccination tend to be lower among older, frequently vaccinated adults. Use of egg-free influenza vaccines is increasing, but limited data exist on factors associated with their immunogenicity in older adults. METHODS: Community-dwelling older adults ≥ 56 years of age were enrolled in a prospective, observational study of immunogenicity of 2018-2019 influenza vaccine. Hemagglutination inhibition (HAI) antibody titers were measured pre-vaccination (Day 0) and four weeks after vaccination (Day 28) to calculate geometric mean titers, seropositivity (HAI titers ≥ 1:40), seroconversion (fourfold rise in HAI titer with post-vaccination titer ≥ 1:40) and geometric mean fold rise (GMFR). Linear regression models assessed the association of predictors of GMFR for each vaccine antigen. RESULTS: Among 91 participants who received egg-free influenza vaccines, 84 (92.3 %) received quadrivalent recombinant influenza vaccine (RIV4, Flublok, Sanofi Pasteur), and 7 (7.7 %) received quadrivalent cell culture-based influenza vaccine (ccIIV4, Flucelvax, Seqirus). Pre-vaccination seropositivity was 52.8 % for A(H1N1), 94.5 % for A(H3N2), 61.5 % for B/Colorado and 48.4 % for B/Phuket. Seroconversion by antigen ranged from 16.5 % for A(H1N1) and B/Colorado to 37.4 % for A(H3N2); 40 participants failed to seroconvert to any antigen. Factors independently associated with higher GMFR in multivariable models included lower pre-vaccination HAI antibody titer for A(H1N1), B/Colorado and B/Phuket, and younger age for A(H1N1). CONCLUSION: Overall pre-vaccination seropositivity was high and just over half of the cohort seroconverted to ≥ 1 vaccine antigen. Antibody responses were highest among participants with lower pre-vaccination titers. Among older adults with high pre-existing antibody titers, approaches to improve immune responses are needed.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Idoso , Influenza Humana/prevenção & controle , Imunidade Humoral , Vírus da Influenza A Subtipo H3N2 , Estudos Prospectivos , Anticorpos Antivirais , Vacinas de Produtos Inativados , Testes de Inibição da Hemaglutinação , Vacinas Combinadas
12.
Microbiol Spectr ; 10(5): e0125122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094193

RESUMO

Chronic rhinosinusitis (CRS) is a common, yet underreported and understudied manifestation of upper respiratory disease in people with cystic fibrosis (CF). Recently developed standard of care guidelines for the management of CF CRS suggest treatment of upper airway disease may ameliorate lower airway disease. We sought to determine whether changes to sinus microbial community diversity and specific taxa known to cause CF lung disease are associated with increased respiratory disease and inflammation. We performed 16S rRNA gene sequencing, supplemented with cytokine analyses, microscopy, and bacterial culturing, on samples from the sinuses of 27 adults with CF CRS. At each study visit, participants underwent endoscopic paranasal sinus sampling and clinical evaluation. We identified key drivers of microbial community composition and evaluated relationships between diversity and taxa with disease outcomes and inflammation. Sinus community diversity was low, and the composition was unstable, with many participants exhibiting alternating dominance between Pseudomonas aeruginosa and staphylococci over time. Despite a tendency for dominance by these two taxa, communities were highly individualized and shifted composition during exacerbation of sinus disease symptoms. Exacerbations were also associated with communities dominated by Staphylococcus spp. Reduced microbial community diversity was linked to worse sinus disease and the inflammatory status of the sinuses (including increased interleukin-1ß [IL-1ß]). Increased IL-1ß was also linked to worse sinus endoscopic appearance, and other cytokines were linked to microbial community dynamics. Our work revealed previously unknown instability of sinus microbial communities and a link between inflammation, lack of microbial community diversity, and worse sinus disease. IMPORTANCE Together with prior sinus microbiota studies of adults with CF chronic rhinosinusitis, our study underscores similarities between sinus and lower respiratory tract microbial community structures in CF. We show how community structure tracks with inflammation and several disease measures. This work strongly suggests that clinical management of CRS could be leveraged to improve overall respiratory health in CF. Our work implicates elevated IL-1ß in reduced microbiota diversity and worse sinus disease in CF CRS, suggesting applications for existing therapies targeting IL-1ß. Finally, the widespread use of highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy has led to less frequent availability of spontaneous expectorated sputum for microbiological surveillance of lung infections. A better understanding of CF sinus microbiology could provide a much-needed alternative site for monitoring respiratory infection status by important CF pathogens.


Assuntos
Fibrose Cística , Microbiota , Sinusite , Adulto , Humanos , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Interleucina-1beta/uso terapêutico , RNA Ribossômico 16S/genética , Sinusite/complicações , Sinusite/diagnóstico , Sinusite/microbiologia , Microbiota/genética , Staphylococcus/genética , Inflamação , Doença Crônica
13.
J Immunol ; 209(4): 760-771, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914833

RESUMO

Influenza-associated bacterial superinfections have devastating impacts on the lung and can result in increased risk of mortality. New strains of influenza circulate throughout the population yearly, promoting the establishment of immune memory. Nearly all individuals have some degree of influenza memory before adulthood. Due to this, we sought to understand the role of immune memory during bacterial superinfections. An influenza heterotypic immunity model was established using influenza A/Puerto Rico/8/34 and influenza A/X31. We report in this article that influenza-experienced mice are more resistant to secondary bacterial infection with methicillin-resistant Staphylococcus aureus as determined by wasting, bacterial burden, pulmonary inflammation, and lung leak, despite significant ongoing lung remodeling. Multidimensional flow cytometry and lung transcriptomics revealed significant alterations in the lung environment in influenza-experienced mice compared with naive animals. These include changes in the lung monocyte and T cell compartments, characterized by increased expansion of influenza tetramer-specific CD8+ T cells. The protection that was seen in the memory-experienced mouse model is associated with the reduction in inflammatory mechanisms, making the lung less susceptible to damage and subsequent bacterial colonization. These findings provide insight into how influenza heterotypic immunity reshapes the lung environment and the immune response to a rechallenge event, which is highly relevant to the context of human infection.


Assuntos
Infecções Bacterianas , Coinfecção , Influenza Humana , Staphylococcus aureus Resistente à Meticilina , Infecções por Orthomyxoviridae , Superinfecção , Adulto , Animais , Linfócitos T CD8-Positivos , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Superinfecção/microbiologia
14.
Microbiol Spectr ; 10(5): e0164522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040164

RESUMO

Staphylococcus aureus can complicate preceding viral infections, including influenza virus. A bacterial infection combined with a preceding viral infection, known as superinfection, leads to worse outcomes than a single infection. Most of the pulmonary infection literature focuses on the changes in immune responses to bacteria between homeostatic and virally infected lungs. However, it is unclear how much of an influence bacterial virulence factors have in single or superinfection. Staphylococcal species express a broad range of cell wall-anchored proteins (CWAs) that have roles in host adhesion, nutrient acquisition, and immune evasion. We screened the importance of these CWAs using mutants lacking individual CWAs in vivo in both bacterial pneumonia and influenza superinfection. In bacterial pneumonia, the lack of individual CWAs leads to various decreases in bacterial burden, lung damage, and immune infiltration into the lung. However, the presence of a preceding influenza infection partially abrogates the requirement for CWAs. In the screen, we found that the uncharacterized CWA S. aureus surface protein D (SasD) induced changes in both inflammatory and homeostatic lung markers. We further characterized a SasD mutant (sasD A50.1) in the context of pneumonia. Mice infected with sasD A50.1 have decreased bacterial burden, inflammatory responses, and mortality compared to wild-type S. aureus. Mice also have reduced levels of interleukin-1ß (IL-1ß), likely derived from macrophages. Reductions in IL-1ß transcript levels as well as increased macrophage viability point at differences in cell death pathways. These data identify a novel virulence factor for S. aureus that influences inflammatory signaling within the lung. IMPORTANCE Staphylococcus aureus is a common commensal bacterium that can cause severe infections, such as pneumonia. In the lung, viral infections increase the risk of staphylococcal pneumonia, leading to combined infections known as superinfections. The most common virus associated with S. aureus pneumonia is influenza, and superinfections lead to worse patient outcomes than either infection alone. While there is much known about how the immune system differs between healthy and virally infected lungs, the role of bacterial virulence factors in single and superinfection is less understood. The significance of our research is identifying bacterial components that play a role in the initiation of lung injury, which could lead to future therapies to prevent pulmonary single or superinfection with S. aureus.


Assuntos
Influenza Humana , Pneumonia Bacteriana , Pneumonia Estafilocócica , Infecções Estafilocócicas , Superinfecção , Camundongos , Animais , Humanos , Superinfecção/microbiologia , Staphylococcus aureus/metabolismo , Interleucina-1beta/metabolismo , Camundongos Knockout , Pneumonia Estafilocócica/microbiologia , Pulmão , Parede Celular/metabolismo , Fatores de Virulência/genética , Proteínas de Membrana
15.
NPJ Vaccines ; 7(1): 77, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794181

RESUMO

SARS-CoV-2 vaccines BNT162b2, mRNA-1273, and Ad26.COV2.S received emergency use authorization by the U.S. Food and Drug Administration in 2020/2021. Individuals being vaccinated were invited to participate in a prospective longitudinal comparative study of immune responses elicited by the three vaccines. In this observational cohort study, immune responses were evaluated using a SARS-CoV-2 spike protein receptor-binding domain ELISA, SARS-CoV-2 virus neutralization assays and an IFN- γ ELISPOT assay at various times over six months following initial vaccination. mRNA-based vaccines elicited higher magnitude humoral responses than Ad26.COV2.S; mRNA-1273 elicited the most durable humoral response, and all humoral responses waned over time. Neutralizing antibodies against the Delta variant were of lower magnitude than the wild-type strain for all three vaccines. mRNA-1273 initially elicited the greatest magnitude of T cell response, but this declined by 6 months. Declining immunity over time supports the use of booster dosing, especially in the setting of emerging variants.

17.
J Immunol ; 208(7): 1711-1718, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321882

RESUMO

COVID-19 has had an unprecedented global impact on human health. Understanding the Ab memory responses to infection is one tool needed to effectively control the pandemic. Among 173 outpatients who had virologically confirmed SARS-CoV-2 infection, we evaluated serum Ab concentrations, microneutralization activity, and enumerated SARS-CoV-2-specific B cells in convalescent human blood specimens. Serum Ab concentrations were variable, allowing for stratification of the cohort into high and low responders. Neither participant sex, the timing of blood sampling following the onset of illness, nor the number of SARS-CoV-2 spike protein-specific B cells correlated with serum Ab concentration. Serum Ab concentration was positively associated with microneutralization activity and participant age, with participants under the age of 30 showing the lowest Ab level. These data suggest that young adult outpatients did not generate as robust Ab memory, compared with older adults. Body mass index was also positively correlated with serum Ab levels. Multivariate analyses showed that participant age and body mass index were independently associated with Ab levels. These findings have direct implications for public health policy and current vaccine efforts. Knowledge gained regarding Ab memory following infection will inform the need for vaccination in those previously infected and allow for a better approximation of population-wide protective immunity.


Assuntos
Fatores Etários , Formação de Anticorpos , Índice de Massa Corporal , COVID-19 , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , COVID-19/imunologia , Humanos , Pacientes Ambulatoriais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
18.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162999

RESUMO

Influenza (IAV) neuraminidase (NA) is a glycoprotein required for the viral exit from the cell. NA requires disulfide bonds for proper function. We have recently demonstrated that protein disulfide isomerase (PDI)A3 is required for oxidative folding of IAV hemagglutinin (HA), and viral propagation. However, it not known whether PDIs are required for NA maturation or if these interactions represent a putative target for the treatment of influenza infection. We sought to determine whether PDIA3 is required for disulfide bonds of NA, its activity, and propagation of the virus. Requirement of disulfides for NA oligomerization and activity were determined using biotin switch and redox assays in WT and PDIA3-/- in A549 cells. A PDI specific inhibitor (LOC14) was utilized to determine the requirement of PDIs in NA activity, IAV burden, and inflammatory response in A549 and primary mouse tracheal epithelial cells. Mice were treated with the inhibitor LOC14 and subsequently examined for IAV burden, NA activity, cytokine, and immune response. IAV-NA interacts with PDIA3 and this interaction is required for NA activity. PDIA3 ablation or inhibition decreased NA activity, viral burden, and inflammatory response in lung epithelial cells. LOC14 treatment significantly attenuated the influenza-induced inflammatory response in mice including the overall viral burden. These results provide evidence for PDIA3 inhibition suppressing NA activity, potentially providing a novel platform for host-targeted antiviral therapies.


Assuntos
Inibidores Enzimáticos/administração & dosagem , Vírus da Influenza A Subtipo H1N1/enzimologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Virais/metabolismo , Células A549 , Animais , Células Cultivadas , Modelos Animais de Doenças , Cães , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Células Madin Darby de Rim Canino , Camundongos , Neuraminidase/química , Infecções por Orthomyxoviridae/metabolismo , Cultura Primária de Células , Dobramento de Proteína , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/virologia , Proteínas Virais/química
19.
Vaccine ; 40(5): 780-788, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-34952751

RESUMO

BACKGROUND: Hemagglutination inhibition (HAI) titers to the live-attenuated influenza vaccine (LAIV4) are typically lower than its counterpart egg-based inactivated influenza vaccines (IIV). Similar comparisons have not been made between LAIV4 and the 4-strain, cell-culture inactivated influenza vaccine (ccIIV4). We compared healthy children's and young adults' HAI titers against the 2019-2020 LAIV4 and ccIIV4. METHODS: Participants aged 4-21 years were randomized 1:1 to receive ccIIV4 (n = 100) or LAIV4 (n = 98). Blood was drawn prevaccination and on day 28 (21-35) post vaccination. HAI assays against egg-grown A/H1N1, A/H3N2, both vaccine B strains and cell-grown A/H3N2 antigens were conducted. Primary outcomes were geometric mean titers (GMT) and geometric mean fold rise (GMFR) in titers. RESULTS: GMTs to A/H1N1, A/H3N2 and B/Victoria increased following both ccIIV and LAIV and to B/Yamagata following ccIIV (p < 0.05). The GMFR range was 2.4-3.0 times higher for ccIIV4 than for LAIV4 (p < 0.001). Within vaccine types, egg-grown A/H3N2 GMTs were higher (p < 0.05) than cell-grown GMTs [ccIIV4 day 28: egg = 205 (95% CI: 178-237); cell = 136 (95% CI:113-165); LAIV4 day 28: egg = 96 (95% CI: 83-112); cell = 63 (95% CI: 58-74)]. The GMFR to A/H3N2 cell-grown and egg-grown antigens were similar. Pre-vaccination titers inversely predicted GMFR. CONCLUSION: The HAI response to ccIIV4 was greater than LAIV4 in this study of mostly older children, and day 0 HAI titers inversely predicted GMFR for both vaccines. Lower prevaccination titers were associated with greater GMFR in both vaccine groups.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adolescente , Anticorpos Antivirais , Formação de Anticorpos , Criança , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/prevenção & controle , Vacinas Atenuadas , Vacinas de Produtos Inativados , Adulto Jovem
20.
medRxiv ; 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34790986

RESUMO

COVID-19 has had an unprecedented global impact on human health. Understanding the antibody memory responses to infection is one tool needed to effectively control the pandemic. Among 173 outpatients who had virologically confirmed SARS-CoV-2 infection, we evaluated serum antibody concentrations, microneutralization activity, and enumerated SARS-CoV-2 specific B cells in convalescent blood specimens. Serum antibody concentrations were variable, allowing for stratification of the cohort into high and low responders. Serum antibody concentration was positively associated with microneutralization activity and participant age, with participants under the age of 30 showing the lowest antibody level. Neither participant sex, the timing of blood sampling following the onset of illness, nor the number of SARS-CoV-2 spike protein specific B cells correlated with serum antibody concentration. These data suggest that young adult outpatients did not generate as robust antibody memory, compared with older adults. Further, serum antibody concentration or neutralizing activity trended but did not significantly correlate with the number of SARS-CoV-2 memory B cells. These findings have direct implications for public health policy and current vaccine efforts. Knowledge gained regarding antibody memory following infection will inform the need for vaccination in those previously infected and allow for a better approximation of population-wide protective immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...